昨天看了下差分约数系统的含义,其实就是如果有n个变量在m个形如aj-ai>=bk条件下,求解的此不等式的方法。
而这种不等式的解法其实就是转化为图论的最小路的算法求解的。我们将上面的不等式边形后得到aj>=ai+bk正好就可以看做是从ai到aj权值是bk的一条路径最短的边。这样一来,只要依照题目的条件写出一系列这样的不等式,也就是相当于按照题意增加了一些合法的边,也就完全转化为了最短路的算法。
再看这道题,题目说[ai, bi]区间内和点集Z至少有ci个共同元素,那也就是说如果我用Si表示区间[0,i]区间内至少有多少个元素的话,那么Sbi - Sai >= ci,这样我们就构造出来了一系列边,权值为ci,但是这远远不够,因为有很多点依然没有相连接起来(也就是从起点可能根本就还没有到终点的路线),此时,我们再看看Si的定义,也不难写出0<=Si - Si-1<=1的限制条件,虽然看上去是没有什么意义的条件,但是如果你也把它构造出一系列的边的话,这样从起点到终点的最短路也就顺理成章的出现了。
我们将上面的限制条件写为同意的形式:
Sbi - Sai >= ci
Si - Si-1 >= 0
Si-1 - Si >= -1
这样一来就构造出了三种权值的边,而最短路自然也就没问题了。
但要注意的是,由于查分约束系统里常常会有负权边,所以为了避免负权回路,往往用Bellman-Ford或是SPFA求解(存在负权回路则最短路不存在)。
1 #include